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Attraction or repulsion between charged colloids?
A connection with Debye–Hückel theory
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Abstract. We discuss the phase behaviour of suspensions of charged colloidal particles,
specifically at low salt concentrations. The total free energy F of a three-component system
of charged colloids and positive and negative salt ions can be expressed as F = FDLVO +F0, where
FDLVO is the free energy of a one-component system of colloidal particles interacting via the DLVO
pair potential, and F0 consists of density-dependent contributions from the salt ions. We argue that
F0 drives a gas–liquid spinodal at low salt concentrations, in accordance with several experimental
observations. The underlying mechanism is equivalent to that of the well-established gas–liquid
transition in simple electrolytes. The present theory connects directly the classic linearized Poisson–
Boltzmann theories for simple electrolytes (Debye–Hückel) and colloidal suspensions (DLVO).

It is well known that the phase behaviour of classical fluids is determined by the interplay
between repulsive and attractive forces between particles. It is often a good approximation to
describe the steric repulsion between spherically symmetric particles by the hard-sphere pair
potential vHS(r), and its contribution to the total Helmholtz free energy of the fluid, F , by that of
the hard-sphere fluid, FHS. The contribution to F from the non-steric pair interactions depends
on the nature of the system. As an illustration we consider Van der Waals’ mean-field treatment
of the dispersion interactions in simple fluids [1, 2], and Debye and Hückel’s treatment of the
Coulomb interactions in simple electrolytes [3, 4]. Denoting the number density of spherical
particles by n, the temperature by T , and the total macroscopic volume of the fluid by V , one
can express these standard results as

F − FHS

V kBT
=




−1

2

a

kBT
n2 ∝ −n2 (simple fluid)

− κ3
D

12π
∝ −n3/2 (simple electrolyte).

(1)

Here a > 0 is the integrated strength of the Van der Waals dispersion interaction in simple
fluids, and 1/κD is the Debye screening length given by

κ2
D = 8πe2ns/εkBT

for a monovalent 1:1 electrolyte with equal densities ns = n/2 of positive and negative salt
ions. The dielectric constant of the electrolyte is ε, and e is the proton charge. The main
difference between the two expressions is the power of the n-dependence, the O(n2) term being
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typical for integrable (short-ranged) interactions, and the O(n3/2) term typical for long-ranged
Coulomb forces (in three dimensions). More important for the present purposes, however,
is the common negative sign and curvature (as a function of n) of the right-hand sides of
equation (1). The negative sign signals that both the dispersion and the Coulomb interactions
provide cohesive energy. This cohesive energy is easily understood in terms of the attractions
between each particle pair in the case of simple fluids, and in terms of the closer proximity, on
average, of oppositely charged particles than of equally charged particles in simple electrolytes.
The negative curvature signals the possibility of a spinodal instability [5]. Indeed, it is well
established that Van der Waals’ theory for simple fluids and the Debye–Hückel theory for
simple electrolytes explain the essence of the coexistence of a dilute gas phase and a dense
liquid phase below a critical temperature (although finer details such as the exact shape of
the coexistence curve require better theories [4]). In both types of fluid, the liquid phase is
stabilized by the cohesive energy provided by the non-steric interactions, and the gas phase by
high entropy (or a low contribution FHS to F ).

The notion of the importance of the interplay between attractions and repulsions is not
limited to the field of simple fluids and simple electrolytes; it has also been recognized for
a long time in the field of colloidal fluids. The classic work of Derjaguin and Landau [6]
and Verwey and Overbeek [7] in the 1940s explains the stability of colloidal suspensions on
the basis of an effective potential, vDLVO(r), between pairs of charged colloidal particles at
separation r . This DLVO potential—named after its discoverers—consists of a steric hard-
sphere repulsion vHS(r), an electrostatic double-layer repulsion of screened Coulomb form,
and a dispersive Van der Waals–London–Hamaker attraction. For monodisperse colloidal
spheres of diameter D = 2R and total charge −Ze, suspended in a simple 1:1 electrolyte of
dielectric constant ε and Debye screening length 1/κD, the explicit form of the pair interaction
reads

vDLVO(r) = vHS(r) +
Z2e2

ε

(
exp[κDR]

1 + κDR

)2 exp[−κDr]

r

− A

12

[
D2

r2 − D2
+

D2

r2
+ 2 ln

(
1 − D2

r2

)]
(2)

where the Hamaker constant A is a measure of the strength of the dispersion interaction
between the colloidal particles [6–8]. Typical values for colloidal suspensions are Z � 10–
104, D � 10–1000 nm, and A � 10−20–10−18 J. For an aqueous electrolyte at room
temperature we have e2/εkBT � 0.72 nm, and 1/κD � 0.3, 10, 300 nm for salt
concentrations ns = 1 M, 1 mM, and 1 µM, respectively. The potential of equation (2),
together with these typical numbers, gives rise to strong screening (and hence attractions
dominating the repulsions) under high-salt conditions, and, conversely, repulsions dominate
the attractions under low-salt conditions. The DLVO theory thus explains the experimental
observations of colloidal instability and irreversible aggregation at high salt concentrations,
say ns � 1 M, and colloidal stability and reversible gas–liquid transitions at lower salt
concentrations, say ns < 1 mM [7, 9]. The screened Coulomb repulsion of the DLVO
potential also explains the experimental observation of colloidal crystals, in the repulsion-
dominated stable regime, at packing fractions of a few per cent [10]. For these reasons,
and many more, the DLVO theory is considered to be one of the cornerstones of colloid
science.

Since the 1980s, however, several experimental observations for colloidal suspensions
have been reported that seem to be inconsistent with the DLVO theory. Invariably these
experiments have been performed at extremely low salt concentrations ns = 1–10 µM,
i.e. in the regime where the screened Coulomb repulsions completely mask the dispersion
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forces according to the DLVO theory†. In contrast, the low-salt observations of gas–solid
coexistence [11], ‘voids’ in otherwise homogeneous suspensions [12], fully developed gas–
liquid coexistence [13], re-entrant fluid–solid transitions [14], and long-lived metastable
crystallites [15] appear to call for strong colloid–colloid attractions. Many attempts to find
a theoretical basis for attractions between like-charged colloids have been reported over the
years [16, 17], but recent direct measurements of the colloid–colloid pair interaction under
the low-salt conditions of interest are perfectly consistent, at least for bulk, with the purely
repulsive screened Coulomb form described by the DLVO theory [18]. The theory presented
in detail in reference [19] explains this puzzling state of affairs quite straightforwardly. Here
we summarize the salient features of our approach, and by making connection with the theory
of phase separation in simple electrolytes provide some further insight into the mechanism
which drives phase separation in low-salt suspensions of charged colloids.

Instead of regarding a colloidal suspension as a one-component fluid of colloids with
effective DLVO pair interactions from the start, we calculate the total Helmholtz free energy F

of a three-component system of colloids (density nc, charge −Ze), negative salt ions (density
n− = ns , charge −e), and positive salt ions (density n+ = ns + Znc, charge +e). Dispersion
interactions are ignored completely. We regard the mixture as an inhomogeneous system of salt
ions in the external field of the colloidal particles, and retain the colloid–salt-ion correlations
at the linearized Poisson–Boltzmann level. The salt-ion–salt-ion interactions are treated at
the Hartree-like mean-field level. In reference [19] we showed (i) that the salt ions form a
diffuse ‘cloud’ of thickness 1/κ and total charge +Ze around the surface of each colloid, with
κ2 = 4πe2(2ns + Znc)/εkBT , and (ii) that F = FDLVO + F0. Here FDLVO is the free energy of
a one-component fluid of density nc with pairwise DLVO interactions given in equation (2),
but with A = 0 and κD replaced by κ . Clearly, there is no cohesive energy contribution in
FDLVO because the pair interactions are purely repulsive. The other contribution to F , F0, is
the so-called volume term given by

F0(nc, ns)

V
= kBT

[
n+

(
ln n+ − 1

)
+ n−

(
ln n− − 1

)
+

η

1 − η

2n+n−
n+ + n−

]

− Z2e2

2ε(R + 1/κ)
nc − 1

2

4πZ2e2

εκ2
n2

c (3)

with colloid packing fraction η = (4π/3)R3nc. The first three terms of equation (3) represent
the ideal-gas and excluded-volume entropy of the microions. The last two terms of equation (3)
are of electrostatic nature, the fourth term being due to ‘inter’ colloid–cloud correlations and
the fifth due to mean-field ‘intra’ colloid–cloud interactions. The correlation term is, for each
colloidal particle, of the order of the Coulomb energy of charges ±Ze separated by a distance
R + 1/κ , and thus represents the ‘internal free energy’ of each colloidal particle with ‘its own’
oppositely charged cloud. The final term of equation (3) corrects for overcounting in FDLVO

by essentially cancelling its mean-field contribution; it may be interpreted as the Coulomb
energy of the clouds in the mean field of other colloidal particles. Although all terms in F0

have a natural physical meaning, the volume term was not considered in early studies of the
phase behaviour of colloidal suspensions. More recent treatments do consider free-energy
contributions that are similar or equivalent to those contained in F0; see e.g. references [20].

† The dispersion contribution in the potential of equation (2) exhibits a (non-physical) negative divergence at contact,
i.e. when r → D+, and decays algebraically as −r−6 when r → ∞. One could therefore argue that the attractions
always dominate the repulsions at contact (‘primary minimum’) and at sufficiently large separation (‘secondary
minimum’). The point here is that the screened Coulomb repulsion, at low enough salt concentrations, forms an
insurmountable barrier that prevents colloids from coming into contact (‘kinetic stabilization’) and shifts the secondary
minimum to such a large colloid–colloid separation that its well depth is substantially less than kBT .
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The correlated cohesive energy term in F0, together with the nc-dependence of κ , turns out
to be the key to the understanding of the experimental low-salt observations, and to establishing
a direct connection between DLVO theory and Debye–Hückel theory. This is most easily
seen for point colloids, R = 0, but the essence of the argument also holds for finite R. At
sufficiently low salt concentrations ns we have κ ∝ n

1/2
c , and hence the cohesive energy term

yields an O(−n
3/2
c ) contribution to F0/V . For exactly the same reasons and by exactly the

same mechanism as in the Debye–Hückel theory for 1:1 electrolytes, this term can cause a
gas–liquid spinodal, and stabilize coexistence of a dense colloidal liquid or solid with a dilute
colloidal gas phase. The mechanism of this phase separation is not based on pairwise colloid–
colloid attractions, but instead on the balance between a more compressed double layer in
a dense colloidal liquid or crystalline phase (and hence a low electrostatic energy but a low
entropy) and the more expanded double layer in a dilute colloidal gas (and hence a high entropy
but a not-so-low electrostatic energy). At sufficiently high salt concentrations ns , the double-
layer thickness is essentially determined by ns only, and does not noticeably depend on nc.
Then the cohesive energy contribution to F0/V is essentially proportional to −nc, and hence
is irrelevant for the thermodynamics.

Full numerical calculations of FDLVO, and hence of F , show that gas–liquid and gas–solid
coexistence occur in aqueous suspensions, with typical colloidal charges Z � 103–104 and
diameters D � 200–700 nm, at salt concentrations ns � 25 µM [19]. These parameter
values are in the regime of the experimental observations of gas–liquid and gas–solid coexist-
ence [11–13, 15]. In addition, the theory predicts closed-loop gas–liquid coexistence, which
may be related directly to the re-entrant phenomena observed in reference [14]. Finally, the
present theory suggests that the observed phase transitions in low-salt colloidal suspensions
are the analogues of the gas–liquid transition in simple 1:1 electrolytes. This could provide an
interesting alternative opportunity to study Coulombic criticality experimentally [4].
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